Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(44): e2306678, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641462

RESUMO

The complex photokinetics of donor-acceptor-donor triads with varying flexible spacer lengths (n = 4-10 carbon atoms) are investigated in liquid and solid solution, as well as in crystals, by steady-state and transient fluorescence spectroscopy combined with computational studies. For the short spacer (n = 4) in a liquid solution, dynamic charge-transfer (CT) state formation with subsequent, efficient exciplex emission is observed, effectively competing with quenching through electron transfer (eT) via a radical ion pair. In a solid solution, a fluorescent CT static complex is formed upon freezing for all spacer lengths. This allows the observations of a former seminal report on stimuli-responsive high-contrast fluorescence on/off switching in films of the triads to be reassigned (Adv. Mater. 2012, 24, 5487), now providing a holistic picture on varying spacer length. In fact, external stimuli of the film by modulating the geometry of the CT complex, which results in on/off fluorescence switching (for n > 4) or in a change of the emission color (n = 4). The work thus demonstrates how in-depth analysis of complex photophysics can be put to practical use in materials science.

2.
J Chem Theory Comput ; 18(9): 5449-5458, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35939053

RESUMO

Excited-state absorption (ESA) spectra of π-conjugated compounds are frequently calculated by (quadratic response) time-dependent density functional theory, (QR) TD-DFT, often giving a reasonable representation of the experimental results despite the (known) incomplete electronic description. To investigate whether this is inherent to the method, we calculate here the ESA spectra of small-to-medium-sized oligophenylenevinylenes (nPV) and oligothiophenes (nT) using QR TD-DFT as well as CASPT2 based on CASSCF geometries. CASPT2 gives indeed a reliable, theoretically correct description of the ESA features for all compounds; the computational effort can be reduced without significant loss of accuracy using TD-DFT geometries. QR TD-DFT, based on BHandHLYP and CAM-/B3LYP functionals, fails on short nTs but provides a reasonable description for spectral positions of nPVs and long nTs. The failure on short nTs is, however, only partly due to the incomplete configuration description but, in particular, related to an improper MO description, resulting in an asymmetric energy spacing of the occupied vs unoccupied MOs in the DFT scheme. Longer nTs, on the other side, adapt approximately the MO scheme for alternant hydrocarbons just like in nPVs, while contributions by two triplet excitations combined to a singlet (which inhibits an accurate treatment of polyenes with standard TD-DFT) do not play a relevant role in the current case. For such "well-behaved" systems, a reasonable representation of ESA spectra is found at the QR TD-DFT level due to the rather small energy shifts when including higher-order excitations.


Assuntos
Teoria Quântica , Teoria da Densidade Funcional
3.
J Chem Phys ; 156(4): 044102, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105079

RESUMO

State-of-the-art complete active space self-consistent field/complete active space second order perturbation theory (CASPT2) calculations are used to investigate the role of double excitations on the ground state absorption (GSA) and excited state absorption (ESA) spectra of distyrylbenzene, an important prototype medium-sized π-conjugated organic compound for optoelectronics. The multi-reference results are compared with linear and quadratic response time-dependent density functional theory (DFT) results, revealing an incomplete description of the electronic transitions in the latter. Careful selection of the active space and basis set in the CASPT2 approach allows for a reliable description of the GSA and ESA features; cost-effective DFT-based geometries can be utilized without a significant loss of accuracy. Double excitations are shown to play a pivotal role already for higher excited states in the GSA spectrum, however, without a relevant impact on the discernible spectral features. In the ESA, which shows a much more complex electronic situation, the crucial importance of double (and higher) excitations in all relevant electronic transitions, indeed, mandates a multiconfigurational treatment as done in the present benchmark study.

4.
Chemphyschem ; 21(16): 1797-1804, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32602989

RESUMO

A combined spectroscopic and TD-DFT case study was performed, to identify a robust method to calculate the complex near UV/Vis absorption spectra of various amino- vs. nitro-substituted 2,4-diphenylquinolines, which vary strongly under neutral and successively acidic conditions. For this, different DFT functionals were tested for geometry optimization and the TD part to calculate the neutral and different protonated species in a fast screening approach, i. e. using single point calculations in an implicit solvent. Offset-corrected M06HF, hitherto only applied to polymers, was identified as a suitable method to reproduce the absorption spectra in a reasonable fashion for all different substitution pattern and all different protonated species at different pH values; moreover, the method properly predicts the energetic ordering of low-lying n-π* and ππ* transitions, which is decisive for the non-/emissive nature of the different compounds. In all, this might provide a valuable tool for computer-aided design of related classes of compounds.

5.
J Am Chem Soc ; 142(6): 2835-2843, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31957436

RESUMO

Absorption spectra of cyanine⊕·Br⊖ salts show a remarkable solvent dependence in non/polar solvents, exhibiting narrow, sharp band shapes in dichloromethane but broad features in toluene; this change was attributed to ion pair association, stabilizing an asymmetric dipolar structure, similar to the situation in the crystal (Bouit, P.-A., et al. J. Am. Chem. Soc. 2010, 132, 4328). Our density functional theory (DFT)-based quantum mechanics/molecular mechanics (QM/MM) calculations of the crystals evidence the crucial role of specific asymmetric anion positioning on the lowering of the symmetry. Molecular dynamics (MD) simulations prove the ion pair association in nonpolar solvents. Time-dependent DFT vibronic calculations in toluene show that ion pairing indeed stabilizes an asymmetric dipolar structure in the electronic ground state. This largely broadens the absorption spectrum in very reasonable agreement with experiment, while the principal pattern of vibrational modes is retained. The current findings allow us to establish a unified picture of the symmetry breaking of polymethine dyes in fluid solution.

6.
Phys Chem Chem Phys ; 21(40): 22429-22439, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31580353

RESUMO

In the framework of optoelectronic luminescent materials, non-radiative decay mechanisms are relevant to interpret efficiency losses. These radiationless processes are herein studied theoretically for a series of stilbenoid derivatives, including distyrylbenzene (DSB) and cyano-substituted distyrylbenzene (DCS) molecules in vacuo. Given the difficulties of excited-state reaction path determinations, a simplified computational strategy is defined based on the exploration of the potential energy surfaces (PES) along the elongation, twisting, and pyramidalization of the vinyl bonds. For such exploration, density functional theory (DFT), time-dependent (TD)DFT, and complete-active-space self-consistent field/complete-active-space second-order perturbation theory (CASSCF/CASPT2) are combined. The strategy is firstly benchmarked for ethene, styrene, and stilbene; next it is applied to DSB and representative DCS molecules. Two energy descriptors are derived from the approximated PES, the Franck-Condon energy and the energy gap at the elongated, twisted, and pyramidalized structures. These energy descriptors correlate fairly well with the non-radiative decay rates, which validates our computational strategy. Ultimately, this strategy may be applied to predict the luminescence behavior in related compounds.

7.
J Chem Phys ; 147(3): 034903, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28734298

RESUMO

A time-dependent density functional theory study is performed to reveal the excited state absorption (ESA) features of distyrylbenzene (DSB), a prototype π-conjugated organic oligomer. Starting with a didactic insight to ESA based on simple molecular orbital and configuration considerations, the performance of various density functional theory functionals is tested to reveal the full vibronic ESA features of DSB at short and long probe delay times.

8.
J Phys Chem Lett ; 8(1): 91-101, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27958747

RESUMO

Fluorination is frequently used to significantly change the properties of conjugated organic materials due to fluorine's exceptional properties; well-known is its impact on electronic structure, but it also impacts the geometry despite fluorine's small size. Less known, the changes in the electronic and geometrical properties may provoke drastic changes of the excited state properties like batho- and hypsochromic shifts of absorption and emission bands (inter alia leading to excited state switching), hypo- and hyperchromic effects, spectral broadening, and changes of the nonradiative deactivation pathways. The state of the art on these issues is summarized in the current Perspective to stimulate further discussions on this intriguing subject.

9.
Adv Mater ; 28(41): 9169-9174, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27572671

RESUMO

Naphthalenediimide-based random copolymers (PNDI-TVTx) with different π-conjugated dithienylvinylene (TVT) versus π-nonconjugated dithienylethane (TET) unit ratios (x = 100→0%) are investigated. The PNDI-TVTx-transistor electron/hole mobilities are affected differently, a result rationalized by molecular orbital topologies and energies, with hole mobility vanishing but electron mobility decreasing only by ≈2.5 times when going from x = 100% to 40%.

10.
Phys Chem Chem Phys ; 18(24): 16501-8, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27263988

RESUMO

The photophysics (spectral positions, band shapes, fluorescence quantum yields and lifetimes) of a series of fluorinated ladder type quaterphenyls L4P and L4P-Fn (n = 2, 4, 6) depend strongly on the degree and position of fluorine, despite the fact that substitution is not performed in the rings but only in methylene-bridges. This is driven by subtle differences in the molecular orbitals (MOs) participating in the electronic transitions, and in the vibronic pattern of the S0 and S1 electronic states as revealed by (TD)DFT calculations. Solid state spectra for n = 0, 2, 4 are similar to those of solution due to small intermolecular interactions as revealed by combined X-ray and (TD)DFT analysis.

11.
Phys Chem Chem Phys ; 17(17): 11715-24, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25870178

RESUMO

Fluorescent bent-core molecules, bearing one or two cyanostilbene units in the lateral structure and different positions of the cyano group (α- or ß-isomers), are described with the aim of modulating the molecular packing and fluorescence properties. These compounds give rise to a variety of crystal polymorphs and bent-core liquid crystalline phases (SmCP, Colr and B6), offering the unique chance to study the fluorescence properties of the cyanostilbene structure in different phases. Experimental and computational studies elucidate geometrical and electronic properties of these bent-core structures but especially the fluorescence properties (spectral positions, quantum yields and decay curves), in a detailed comparison between diluted solutions, in dichloromethane (DCM) or poly(methylmethacrylate) (PMMA), and condensed phases. Quantum yields as high as 70% have been obtained in some diluted solutions (PMMA) and condensed phases. Remarkably, the quantum yield values depend on the position of the cyano group, being higher for ß- than for the α-isomers due to the higher radiative rates and lower non-radiative rates of the former. The photophysical characterization in the condensed phase focuses on RT studies with solid samples and different processing, and show that, upon aggregation, interactions between the cyanostilbene groups result in changes of the emission spectra and dynamics compared to the diluted systems in DCM and PMMA, giving rise to H-aggregations of varying strength. Furthermore, the compounds exhibit thermochromism, showing a green-yellow fluorescence in the pristine crystalline phase that changes to blue on heating to the liquid crystal phase.

12.
Nanoscale ; 6(14): 8334-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24932960

RESUMO

The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.

13.
Chempluschem ; 79(1): 45-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31986753

RESUMO

A series of iridium(III) compounds have been used as stopper molecules at the pore openings of zeolite L and act as effective donor units for transferring excitation energy to dye molecules entrapped within the zeolite channels. The synthesis and photophysical characterization of the new iridium(III) complexes are described, along with Förster resonance energy-transfer experiments. Transfer efficiencies for the studied systems are discussed on the basis of the role played by the localization of the donor excited state and the acceptor distribution in the channels. Because iridium(III) complexes can also be electrically excited, the electroluminescent behavior of donor-acceptor zeolite systems can be explored, by embedding them into a polymeric active layer and constructing light-emitting devices (LEDs). Novel hybrid LEDs can be fabricated with emission from the dyes entrapped into the zeolites and sensitized by the electro-responsive iridium(III) complex.

14.
J Phys Chem Lett ; 4(10): 1597-602, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-26282965

RESUMO

J-aggregation has been shown to be beneficial for light amplification in single crystals of π-conjugated organic molecules. In the case of H-aggregation, the criteria for such processes are still under debate. It has also been shown that H-aggregate arrangements with considerable π-π overlap are detrimental for light amplification. We show here that a proper alignment of the molecules in the crystal lattice, which minimizes π-π overlap between adjacent molecules, gives rise to (random) stimulated emission from cofacial arrangements similar to that of the herringbone aggregates.

15.
Front Chem ; 1: 35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24790963

RESUMO

We present a conceptual approach to low bandgap copolymers, in which we clarify the physical parameters which control the optical bandgap, develop a fundamental understanding of bandgap tuning, unify the terminology, and outline the minimum requirements for accurate prediction of polymer bandgaps from those of finite length oligomers via extrapolation. We then test the predictive power of several popular hybrid and long-range corrected (LC) DFT functionals when applied to this task by careful comparison to experimental studies of homo- and co-oligomer series. These tests identify offset-corrected M06HF, with 100% HF exchange, as a useful alternative to the poor performance of tested hybrid and LC functionals with lower fractions of HF exchange (B3LYP, CAM-B3LYP, optimally-tuned LC-BLYP, BHLYP), which all significantly overestimate changes in bandgap as a function of system size.

16.
Adv Mater ; 24(48): 6473-8, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23060051

RESUMO

Three-in-one: A novel distyrylbenzene-based material forms J-type aggregates in single crystals with highly polarized and bright red emission, giving rise to optical gain narrowing, for which different mechanisms (amplified spontaneous emission, laser emission and stimulated resonance Raman scattering) are observed. These are correlated with the favorable intrinsic and macroscopic properties of the crystal, in particular to the orientation of the molecules to the crystal surface.


Assuntos
Lasers , Estirenos/química , Cristalização , Modelos Moleculares , Estrutura Molecular , Espalhamento de Radiação , Análise Espectral Raman , Estirenos/síntese química
17.
J Chem Phys ; 135(12): 124509, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21974537

RESUMO

Fluorination has become a versatile route to tune the electronic and optical properties of organic conjugated materials. Herein we report a new phenomenon, excited-state switching by per-fluorination of para-oligophenylenes, placing a low intensity 1(1)B(2) state below the 1(1)B(1) state, giving rise to large Stokes shifts. The switching is attributed to the specific impact of fluorine on the delocalized and localized frontier orbitals as elucidated by quantum-chemical calculations. The sterical demands of the fluorine atom additionally diminish efficient conjugation along the chain, leading to hypsochromic shifts with respect to the unsubstituted counterparts and to a weak chain length dependence of the absorption and unstructured emission spectra and enhanced internal conversion.


Assuntos
Fluorenos/química , Hidrocarbonetos Aromáticos/química , Teoria Quântica , Fluorenos/síntese química , Estrutura Molecular
18.
Phys Chem Chem Phys ; 13(4): 1457-65, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21152513

RESUMO

The impact of backbone rigidity on the optical properties of thiophene-based compounds is studied by analyzing in detail the geometrical, electronic, optical and vibronic features of a family of oligothienoacenes (nTAs) in comparison to non-fused α-oligothiophenes (nTs) by means of quantum-chemical calculations. Ring fusion in nTAs provokes a greater conjugation in the ground state. However, the change in the bond length alternation upon electronic excitation is very similar in both systems, which is also reflected in a similar evolution of the first optical transition energy with increasing oligomer size. Larger transition energies in nTAsvs.nTs arise from an electronic effect rather than from a structural one. nTAs present a normal mode predicted at ca. 500 cm(-1) which displays significantly higher Franck-Condon activity compared to nTs and which leads to pronounced differences in the optical spectra. Due to the rigid structure of nTAs, persistent mirror symmetry of absorption and emission is observed, very different to nTs.

19.
J Am Chem Soc ; 131(39): 14043-9, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19480450

RESUMO

White-light-emitting single molecules are promising materials for use in a new generation of displays and light sources because they offer the possibility of simple fabrication with perfect color reproducibility and stability. To realize white-light emission at the molecular scale, thereby eliminating the detrimental concentration- or environment-dependent energy transfer problem in conventional fluorescent or phosphorescent systems, energy transfer between a larger band-gap donor and a smaller band-gap acceptor must be fundamentally blocked. Here, we present the first example of a concentration-independent ultimate white-light-emitting molecule based on excited-state intramolecular proton transfer materials. Our molecule is composed of covalently linked blue- and orange-light-emitting moieties between which energy transfer is entirely frustrated, leading to the production of reproducible, stable white photo- and electroluminescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...